\begin{tabular}{|c|c|}
\hline Number and place value \& Addition and subtraction \\
\hline \begin{tabular}{l}
Counting in steps of 2, 3,4,5 and 10 from any number, forward and backwards.
\[
\begin{aligned}
\& 2-0,2,4,6,8,10,12,14,16,18,20,22 \\
\& 3-0,3,6,9,12,15,18,21,24,27,30,33 \\
\& 4-0,4,8,12,16,20,24,28,32,36,40 \\
\& 5-0,5,10,15,20,25,30,35,40,45,50,55
\end{aligned}
\] \\
Real life: \\
3 groups of 2 eggs \(=2+2+2=6\) \\
Compare and order numbers from 0 up to 100: \\
Ordering numbers: \\
Understanding the value of tens and ones. \\
" 61 has the least ones but the value of 6 tens means it is the biggest number." \\
\(\begin{array}{lllll}43 \& 34 \& 23 \& 56 \& 61\end{array}\) \\
Greater than, Less than, equal to: \\
\(15<24 \quad 15\) is less than 24 \\
\(36>18 \quad 36\) is greater than 18
\end{tabular} \& \begin{tabular}{l}
Addition and subtraction facts to 20 fluently:
\[
\begin{array}{ll}
1+9=10 \& 1+19=20 \\
2+8=10 \& 2+18=20
\end{array}
\] \\
Apply this knowledge to number facts to 100: \\
I know that \(7+3=10\) \\
Therefore \(70+30=100\) \\
Mental methods (Can be applied to addition and subtraction): \\
2 digit + 1 digit = use fingers to count forwards (+) or back (-) \\
e.g. \(16+7=\) \\
I need 7 fingers and put 16 in my head. (Each time you count forward a number a finger is put down). \\
Written methods:
\[
15+13=28
\] \\
Draw diennes to support. \\
Use column addition/ subtraction. (line up place value (tens and ones) and always start with the ones)
\[
38+14=
\] \\
Column method, when carrying the ones into the tens column, we carry at the top. \\
32-14 = \\
Column method, exchange/ borrow from the tens column. \\
Show an understanding of when we need to carry (+) and exchange \\
\((-)\) and why we do this. \\
Solving problems using real objects: \\
Look for key vocabulary in questions. \\
Use pictorial representations to support understanding \\
Q. James has 28 eggs, he gives 12 to his Grandma. How many does he have left? \\
Q. Sofia buys 15 chocolate coins for Halloween, she then buys 13 more. How many does she have in total?
\end{tabular} \\
\hline Multiplication and Division \& Fractions \\
\hline \begin{tabular}{l}
Use multiplication and division facts for the 2,5 and 10 multiplication tables: \\
\(2 \times 5=10 \quad 10\) divided by \(5=2\) \\
\(5 \times 6=30 \quad 30\) divided by \(6=5\) \\
Solving problems involving multiplication and division: \\
Alan has 10 sweets he shared them between 5 of his friends, how many does each friend get? \\
Solving problems using materials, arrays, repeated addition, mental methods and multiplication and division facts:

$$
\begin{aligned}
& 3 \times 6=18 \\
& 3+3+3+3+3+3=18
\end{aligned}
$$ \\

18 divided by $3=6$ \\
18 divided by $6=3$

 \&

I can recognise, find, name and write fractions (1/3, 1/4, 2/4, 3/4) of a length, shapes, sets of objects or quantity. \\
$\frac{2}{4}$ of $16=8$
\end{tabular} \\

\hline Measurement \& Statistics \\
\hline I can solve simple problems in a practical context involving the addition and subtraction of money of the same unit. \& I can ask and answer questions about totalling and comparing data. \\
\hline
\end{tabular}

Children should be able to recognise the values of all coins and notes. When shopping encourage children to pay and count the change (where possible).	Count how many motorbikes you see when you are out for a walk. How many more cars did you see? What was the most popular mode of transport?
Properties of shapes	Position and direction
Comparing and sorting 2D and 3D shapes: Look for shapes in the real environment. Discuss the properties of shapes: How many sides? How many faces?	A rotation is a turn: A right angle is a quarter: Half and three-quarter turns:

